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Noise-controlled oscillations and their bifurcations in coupled phase oscillators
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We derive in Gaussian approximation dynamical equations for the first two cumulants of the mean field
fluctuations in a system of globally coupled stochastic phase oscillators. In these equations the intensity of
noise serves as an explicit control parameter. Its variation generates transitions between three dynamical
regimes:~i! stationary,~ii ! rotatory and~iii ! locally oscillatory~breathing!. The latter regime has previously not
been reported in studies of globally coupled noisy phase oscillators. Our detailed bifurcation analysis is
supported by numerical simulations of an ensemble of coupled stochastic phase oscillators. Similar regimes are
also found in simulations of globally coupled stochastic FitzHugh-Nagumo elements.
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I. INTRODUCTION

Ensembles of nonlinear oscillators are abundant in na
@1#. These are in biology, just to mention a few exampl
populations of epithelial sensory cells@2#, neurons@3,4#,
heart cells@5–7# or, on the macroscopic level, swarms
flashing fireflies@8,9# and oscillating populations of specie
in ecosystems@10#. Outside the living nature, ensembles
oscillators are encountered in different areas of chemi
@11,12# and physics@13–19#.

This great variety of systems shares the common tende
to synchronize their oscillatory constituents. This synchro
zation is caused by the interaction between the elemen
the ensemble. It results in the emergence of one or of sev
collective modes and manifests itself in the adjustment
phases of the individual oscillators@20,21#. Thereby, syn-
chronization serves as a fundamental mechanism of s
organization and structure formation in systems of coup
oscillators@13,22,23#.

The dynamics of a single oscillatory element can be c
into a simple form by restricting the description to its pha
dynamics along a limit cycle@11#:

ẇ5V1 f ~w!. ~1!

ThereinV is the natural frequency of the oscillator and t
2p-periodic function f (w) describes the inhomogeneity o
the temporal evolution along the limit cycle. In the gene
first approximation this function can be modeled byf (w)
;a sinw with a being the nonlinearity parameter.

In case of coupled oscillators the equations of individ
units have to be complemented by additional terms resp
sible for their interaction. For most relevant interactio
these terms depend on the difference of the individual pha
only. These equations can be written as@24–28#

d

dt
w i5V2a sinw i1(

j
Wi , j~w j2w i !, ~2!
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where Wi , j (w) are 2p-periodic functions. Below we will
restrict ourselves to global coupling and investigate the s
plest case withW(w);N21sinw and N is the number of
units in the ensemble.

The generic system~2! has been successfully applied
studies of synchronization and pattern formation in a lot
different situations@11,28#. In particular, ifV.a it describes
waves, synchronizations and global oscillations of coup
self-sustained oscillators. Contrary, in caseV,a the model
yields pulse and spiral propagation as well as more com
cated structures in coupled excitable units@11#. Studies on
mutual synchronization with local and global coupling we
extended to the case of nonidentical oscillators, whose n
ral frequencies (V→V i) are distributed over some interva
@5,24,29–35#. A rich variety of different locally and globally
locked, running, pinned and oscillatory-dead states has b
reported@36–41#. For random dichotomic perturbations o
V i(t), bistability and oscillatory behavior of globally
coupled phase oscillators were found@15,42#.

Below we concentrate on noise effects in collective d
namics of globally coupled oscillators~2!. In particular, we
address the question whether an additive white noise ac
independently on every unit in the ensemble can lead
qualitative~or bifurcational! changes in the global respons
of the system.

The nontrivial role of noise in coupled phase oscillato
was underlined in several studies. For example, extrem
rich behavior is enforced by multiplicative noise as nois
induced first and second order phase transitions and clu
ing @43–45#. Spontaneous symmetry breaking entailing
ratchet-like transport mechanism with negative resista
and a hysteretic behavior are subjects of@46–49#. Globally
connected ratchets were described in@50#.

Here we reconsider the simplest case where statistic
independent noise sources with constant intensity are ad
to Eqs.~2!. In Sec. II we derive dynamical equations for th
first two cumulants~the mean and the variance! of the en-
semble phase

f~ t !5
1

N (
i

N

w i~ t !, ~3!
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within Gaussian approximation. In similar previous attem
restricted to weak noise a transition to noise-induced osc
tions in coupled excitable units was reported@51#. In con-
trast, our approach remains valid for strong noise as well.
perform a detailed bifurcation analysis~Sec. III! and identify
a novel regime of localized or breathing oscillations.

Further on, we support the dynamical analysis of the
terministic cumulant equations by numerical simulations
stochastic phase equations as well as of globally coup
noisy FitzHugh-Nagumo systems~Sec. IV!. We show that
the increase of noise results in changes of the behavior w
are in accordance with the general picture found for the
mulant equations.

II. THE MODEL AND CUMULANT EQUATIONS

We start with a set ofN globally coupled identical non
linear oscillators which are subject to white noise. The st
of each oscillator is characterized by its instantaneous ph
w i . We choose one of the most studied examples—the ‘
tive rotators’’—introduced in@26#:

ẇ i512a sinw i1
W

N (
j 51

N

sin~w j2w i !1j i~ t !, ~4!

with i 51, . . . ,N. Here, the parametera characterizes the
inhomogeneity of the phase rotation. When for an isola
oscillator a is increased across the value 1 a saddle-node
bifurcation occurs and the oscillatory regime is replaced b
steady state. The intensity of coupling between the osc
tors is measured by the parameterW. Finally, the stochastic
terms j i(t) correspond to thermal fluctuations modeled
Gaussian white noise witĥj i(t1)j j (t2)&52Td i , jd(t12t2).

Formally, it is possible to choose a ‘‘corotating’’ referen
frame by introducing a set of variablesc i(t)[w i(t)2t, i
51, . . . ,N. Then 12a sinwi is replaced by2a sinwi .
Equations of this kind have been recently treated in@42#.
However, in certain situations the laboratory reference fra
is preferable, and below we provide the description of beh
ior in Eq. ~4! from the point of view of the quiescent ob
server.

Quantitatively, the coherence in an ensemble of oscilla
can be measured by complex averaged characteristics

rk[
1

N (
j 51

N

eikw j5ck1 isk , k51,2, . . . ,̀ , ~5!

with ck[N21( j 51
N coskwj , sk[N21( j 51

N sinkwj defined in
the limit N→`. In the completely disordered state all the
characteristics vanish identically. On the contrary, in a s
chronized state they possess nonzero values. Therefore
natural to treat the variablesrk as a set of complex orde
parameters. Among those, of course, the variablesc1 ands1
are of special significance.

The dynamics of the collective variablesrk obeys the
infinite chain of coupled complex-valued equations@27#,
06620
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ṙk5rk~ ik2k2T!2
ak

2
~rk112rk21!1

Wk

2
~r1rk21

2r1* rk11!, ~6!

complemented by the ‘‘boundary condition’’r051. In terms
of real ck andsk this reads as

ċk52Tk2ck2ksk2
ak

2
~ck112ck21!1

Wk

2
„c1~ck21

2ck11!2s1~sk211sk11!…, ~7!

ṡk52Tk2sk1kck2
ak

2
~sk112sk21!1

Wk

2
„c1~sk21

2sk11!1s1~ck211ck11!…,

with c051, s050.
To study possible regimes in such infinite sets of eq

tions, usually a truncation is performed: variablesrk with
values ofk beyond certaink0 are neglected. The descriptio
of bifurcations was performed withk0520 in @27#. Notably,
in spite of the formal possibility of a very complicated d
namics in a high-dimensional phase space, the attractor
Eq. ~7! are rather simple. Our numerical experiments withk0
up to 100 failed to reveal attracting states other than equ
ria or periodic solutions. At nonzero values of noise intens
T the variablesck and sk are rapidly decaying with the in
crease ofk, thereby justifying a truncation. However, fo
very small T the ensemble ofw i remains highly ordered
therefore the decay ofck andsk becomes visible rather lately
and low values of the truncation levelk0 in this parameter
region may result in the appearance of numerical artifa
spurious quasiperiodic or even chaotic attractors.

The very fact that the behavior is low-dimensional hin
to the possibility of an alternative, much simpler and co
putationally less expensive model, in which a small num
of variables would deliver an adequate description of dyna
ics. In fact, such approach would be tantamount to a clos
of the infinite set of equations~7!. This requires a hypothesi
on the distribution of the oscillators in the ensemble. Rec
structed from the values of therk the distribution has a dis
tinct single-hump shape. Therefore, it appears natura
model this distribution by a Gaussian approximation. We
sume that the mean field~3! obeys a time-dependent Gaus
ian distribution with the meanm(t) and the variances(t),
respectively. Then the order parameters become exp
functions of these first two cumulants:

sk5e2k2s2/2sinkm, ck5e2k2s2/2coskm. ~8!

As a result, allck andsk can be expressed throughc1 and
s1 : c25c1

42s1
4 , s252s1c1(s1

21c1
2), etc. By virtue of this,

the infinite-dimensional Eq.~7! is reduced to a system of th
2nd order:

ċ152s12Tc12
a

2
~c1

42s1
421!1

Wc1

2
„12~c1

21s1
2!2

…,

~9!
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ṡ15c12Ts12as1c1~c1
21s1

2!1
Ws1

2
„12~c1

21s1
2!2

….

Alternatively, on eliminating all variablesck ,sk , we ar-
rive at a set of purely dynamical equations for the evolut
of the cumulants:

ṁ512ae2s2/2coshs2sinm, ~10!

s 2̇52T22~ae2s2/2cosm1We2s2
!sinhs2.

Equations~9! and ~10! represent two equivalent param
eterizations of the same dynamical system, that is the Ga
ian ‘‘truncation’’ of the infinite Eq.~7!. For an observer who
watches the whole entity of rotators in the laboratory fram
the description in terms of cumulants appears to be m
convenient, since this set of variables yields the measur
characteristics: the position of the instantaneous center o
distribution and its width. The evolution of the ‘‘micro
scopic’’ system~4! is determined by the immediate position
of the individual oscillators on the circle 0<w i,2p and
does not depend on their histories: the number of rotati
completed by each of these oscillators around the cir
Therefore, the ‘‘macroscopic’’ variablem is restricted to a
circle, and the phase space of Eq.~10! is a cylinder. Math-
ematically, of course, the description in terms ofm and s2

does not differ from the description in terms ofc1 ,s1, up to
an important distinction: for the latter variables the pha
space is a plane~with physically meaningful values lying
within the unit circle!. As we will see below, this topologica
difference can be crucial for the interpretation of certa
events.

A similar approach was pursued in@51# where the distri-
bution of rotators in Eq.~4! was also assumed to be Gaus
ian, but only the least order terms ins2 were retained. No-
tably, in the nonstationary regimes of the dynamical syst
derived in@51#, the variables2 displayed unbounded growt
which indicated to the inconsistency of the model. On
contrary, the presence of higher order terms in Eq.~10! en-
sures a saturation at finite values ofs2.

III. DYNAMICAL REGIMES AND THEIR BIFURCATIONS

In this section, we describe the bifurcations in Eqs.~10!
@or, equivalently, in Eqs.~9!#.

Since we are unable to write down the time-depend
solutions as explicit functions of time and the parametersa,
W andT, the respective parts of the bifurcation diagrams
obtained with the help of numerical bifurcation techniqu
In contrast, derivation of conditions for the bifurcations
time-independent~stationary! solutions can be reduced to a
algebraic problem. This reduction can be done in the follo
ing way. On calculating the resultant of the right-hand s
~RHS! of Eqs.~9! with respect to either of the variabless1 or
c1, we obtain a polynomial equation of the 21st degree
the remaining variable, where the coefficients are expl
functions of (a,W,T). In the 3-dimensional parameter spac
all changes in the number of real roots of the latter poly
mial occur on a 2-dimensional discriminant surface. The
06620
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gebraic expression for the discriminant surface in terms
(a,W,T) is far too long and cumbersome to be quoted e
plicitly; below we merely present the results based on
analysis of this expression.@The same expression is obtaine
from Eqs. ~10! after turning their transcedental RHS in
polynomial functions with the help of the substitutionsx

[tan(m/2) andy[e2s2
.# Since changes in the number o

real roots correspond in the phase space to a birth and d
of stationary solutions, the knowledge of the location of t
discriminant surface characterizes completely the sad
node bifurcations. Finally, stability of stationary solutions
expressed in terms of the coefficients of the Jacobian ma
e.g., the Hopf bifurcation requires a vanishing trace of
Jacobian.

For the analysis of the time-dependent~periodic, ho-
moclinic! solutions we used a standard 4th order Run
Kutta integrator. Periodic states were identified as fix
points of the Poincare´ mapping on the appropriate curve o
the phase plane. Homoclinic bifurcations~existence of tra-
jectories, asymptotical to the saddle point att→6`) were
identified as ‘‘border’’ parameter values at which the nume
cally reconstructed unstable manifold of the saddle switc
between two different attractors.

An analysis of Eqs.~10! shows that in the physically rel
evant domain of the parameter space, they possess from
3 steady solutions. The typical situation is represented in
1. We see that the surface of steady solutions forms two fo
which meet in a cusp point. The steady states on the lo
leaf of this surface are stable; the ones on the intermed
leaf are always unstable~they correspond to the sadd
points!. Finally, the states on the upper leaf are unstable
low values ofT and stable ‘‘beyond’’ the solid line which
denotes the Hopf bifurcation.

Complete bifurcation diagrams are presented in Fig.
For the description of the bifurcation scenarios it is conv
nient to consider the following route in the parameter spa
fix the values ofT andW, and proceed by gradually decrea
ing a. High values ofa correspond to the domain in whic
the steady state~fixed point! is unique and globally attract
ing. If the intensity of noiseT is sufficiently high, variation
of a does not destabilize this state. However, for low a

FIG. 1. Steady solutions of cumulant equations~10! at W51.
Solid gray line: Hopf bifurcation. Filled gray circle: Takens
Bogdanov bifurcation. Here and below all plotted quantities a
parameters are dimensionless.
6-3
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moderate values ofT the decrease ofa leads through a se
quence of bifurcations. There are two saddle-node bifur
tions: one of them~the right fold in Fig. 1, the linesn1 in
Fig. 2! creates two additional steady states: a saddle p
and a node, whereas the other one~the left fold, respectively
the line sn2) destroys the saddle and the original stea
state. For lower values ofa the system has an attracting lim
cycle. On both curvessn1 andsn2 one of the eigenvalues o
the linearization of the flow near the steady state vanish
On the right branchsn1 of the saddle-node bifurcation, ther
is a point where the second eigenvalue vanishes as well.
point ~the codimension-2 Takens-Bogdanov bifurcation! is
an origin of two further bifurcation lines: the Hopf bifurca
tion and the homoclinic bifurcation. The lineH of the Hopf
bifurcation extends into the domain of lowera; for smalla it
tends toT5W/2. Above H, the steady state is stable, an
below this line the stable limit cycle exists.

The curveh of the homoclinic bifurcation marks the ex
istence of an orbit which is homoclinic to the saddle poi
by definition, this requires the presence of a saddle po
therefore this curve exists only in the ‘‘wedge’’ between tw
lines sn1,2 of saddle-node bifurcations. Details of the inn
structure of this wedge are presented in Fig. 3. The par
the wedge above the curve of homoclinic bifurcationh cor-
responds to a hysteretic dynamics: in the parameter re
between the curvesh, H andsn2 the stable steady state co
exists with the attracting limit cycle, whereas in the ‘‘tr
angle’’ delineated by the Hopf bifurcation curveH and two
saddle-node bifurcationssn1,2 two stable steady states a
present.

As mentioned above, on the parameter plane the right
point of the curveh of the homoclinic bifurcation is the

FIG. 2. Bifurcation diagrams of Eq.~10! at W51 ~a! and W
50.25 ~b!. sn1,2: saddle-node bifurcations;H: Hopf bifurcation;h:
homoclinic bifurcation;S: change of type of oscillatory state; fille
circle: Takens-Bogdanov point.
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Takens-Bogdanov point, denoted as TB in Fig. 3. The
end point ofh ~denoted byL) lies on the saddle-node curv
sn2. Here, another codimension-2 event takes place: the
stable manifold of the saddle-node point returns back to
fixed point along the ‘‘nonleading’’ direction@52#. The seg-
ment ofsn2 which lies below the pointL, corresponds to the
so-called ‘‘Andronov bifurcation:’’ the structurally unstabl
saddle-node point possesses a homoclinic loop; whena is
decreased, the fixed point disappears, the loop is destro
and leaves in the phase space the limit cycle. On this s
ment ofsn2, the saddle-node and homoclinicity are prese
together; beyond the codimension-2 pointL they detach, and
two separate curves exist: one~the upper segment ofsn2) for
the saddle-node bifurcation, the other one~the curveh) for
the homoclinic bifurcation.

Just below the curveH of the Hopf bifurcation, the new-
born periodic orbit has a small amplitude. When, under fix
a, the value ofT is decreased, this amplitude gradua
grows. On reaching the further bifurcation curve, denoted
S in Fig. 2, the topology of this periodic orbit in the phas
space ofm ands2 changes: out of a closed trajectory whic
can be continuously contracted into a point, it become
closed curve wrapped around the cylinder. From the poin
view of the observer in the laboratory frame, this marks
important qualitative transition: in the dynamics of nons
tionary distribution~time-dependent density of rotators! the
‘‘breathing’’ oscillations of the center back and forth are r
placed by full-circle rotations. In the phase space, this p
cess is mediated by a ‘‘non-physical’’ repelling phase traj
tory which leads to the infinite point (m5p, s25`): the
periodic orbit ‘‘touches’’ this trajectory and changes its t
pology. This can be viewed as a kind of a global bifurcatio
homoclinics to the fixed point which lies at infinity. Th
increase and subsequent decrease of the amplitude of o
lations in s2 happens rapidly, in a rather narrow parame
interval; several stages of this process are depicted in Fig

However, strictly speaking this transition is not a true b
furcation but a peculiar projection effect, an imitation of

FIG. 3. Enlarged segment of the bifurcation diagram of Eq.~10!
at W51. sn1,2: saddle-node bifurcations;H: Hopf bifurcation;h:
homoclinic bifurcation; circles: bifurcation points of codimension
6-4
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bifurcation: from the point of view of the phase portraits
the plane spanned by variablesc1 , s1 there are no qualitative
changes. The decrease ofT leads to the growth of the size o
the closed curve corresponding to the limit cycle. At a cert
value of T this curve passes through the originc15s150.
Accordingly, in the course of temporal evolution the dist
bution of rotators becomes for a short moment perfectly fl
this corresponds to unbounded variance. It is exactly
event which in terms of cumulantsm and s2 looks like an
excursion to infinity and denotes the transition from loc
ized oscillations to rotations. On the phase planec1 , s1 both
states are described by a closed curve; if this curve encir
the origin, the distribution is rotating; if the origin lies ou
side the curve, the center of the distribution is merely os
lating back and forth.

Since this switching of the periodic orbit is only an ‘‘im
tated’’ homoclinics, the temporal period of this orbit does n
diverge, in contrast to the usual picture of a homoclinic
furcation. Within the cumulant description, this can be e
plained by the noncompact character of the event: since
saddle point lies at infinity, both the approach to this po
along its stable manifold and the subsequent departure a
the unstable manifold occur at infinite speed. According
the slowdown near the saddle, typical for conventional
moclinic bifurcations, is absent, and the duration of mot
along trajectory remains finite.

Of course, near the homoclinic bifurcations which invol
the finite-amplitude saddle point, the period of oscillatio
diverges; on approaching from the left the lower segmen
the curvesn2 ~Fig. 3! this divergence follows the law o
inverse square root, whereas just above the curveh the di-
vergence is logarithmic.

In the setup with fixed parametersa andW and a control-
lable level of noise, the bifurcations are encountered in
ferent order. Ifa is chosen to the left of the curvesn2 low
noise intensities~i.e., the small values ofT) correspond to
the rotating distribution of oscillators; asT gets larger~on
crossing the curveS) rotations are replaced by oscillation
around a steady state. Further growth ofT leads to the de-
crease of the amplitude of these oscillations; at high val

FIG. 4. Transition from oscillations to rotations. Phase portra
of Eq. ~10! for A51.06, W51 and various values ofT. The ‘‘bi-
furcation’’ value isTS50.19535209 . . . .
06620
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of T the steady state~corresponding to the time-independe
distribution of mean field! gets stabilized. If the value ofa
slightly exceeds 1, the sequence of states starts with the t
independent distribution which remains stable within a c
tain interval of noise intensities. On crossing the curvesn2,
this steady state disappears, and the onset of oscillatory
gime takes place, with the phase either running around
circle ~for lower values ofa) or oscillating back and forth
~for moderate values ofa). Finally, on the curveH of the
Hopf bifurcation, the amplitude of oscillations shrinks an
the other steady solution acquires stability. In this way,
intensity of external noise controls whether the mean field
an ensemble of oscillators settles down to a stationary di
bution or prefers the distribution which is periodic in time

Variation of the coupling strengthW appears to produce
merely the quantitative changes in the bifurcation diagra
With the decrease ofW the bifurcation values ofT are getting
smaller @Fig. 2~b!#; the wedge between the curves of th
saddle-node bifurcation becomes sharper: in the determ
tic limit T→0 the line sn2, irrespectively ofW, begins at
(a51,T50) whereas the starting point ofsn1 for W→0
tends to (a533/4/251.13975 . . . ,T50).

To check the above conjectures, we performed direct
merical integrations of Eq.~4! with a set ofN5104 oscilla-
tors. Qualitatively, the results correspond to the predictio
of the above analysis: for low intensities of noise the re
tively sharped peaked distribution rotates around the ci
@Fig. 5~a!#, for intermediate intensities the oscillations wi
small amplitude have been observed@Fig. 5~b!# and for high
values ofT the system settles onto the steady broad distri
tion @Fig. 5~c!#. Of course, the steadiness of the distributi

s

FIG. 5. Distribution of oscillators ata50.9; W51 from direct
numerical simulation ofN5104 oscillators governed by Eqs.~4!:
evolution of instantaneous profiles and isolines of local densityr.
~a! Running phase atT50.1; ~b! local oscillations atT50.25; ~c!
steady distribution atT50.3.
6-5
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FIG. 6. Phase portraits~with
transients! for the order paramete
in numerically simulated Eqs.~4!
at a50.9; W51. ~a! Running
phase atT50.1; ~b! local oscilla-
tions atT50.22; ~c! steady distri-
bution atT50.3.
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does not imply time independence for individual oscillato
also in the rotating state the angular velocities of the osc
tors typically exceed the rate with which the entire distrib
tion rotates around the cylinder. Quantitatively, the thresh
values for the transitions between those states turned o
be lower than the values predicted by the bifurcation anal
of Eqs.~10!; this can be seen, e.g., by comparison of para
eters employed for Fig. 5 with the bifurcation diagram
Fig. 2~a!.

Phase portraits for the componentsc1 ands1 of the com-
plex order parameter are presented in Fig. 6. Noisy li
cycles characterize both the rotating and the locally oscil
ing distributions; in the former case, the diameter of t
cycle is noticeably larger, and the origin lies inside it; in t
latter case the origin on the phase plane remains outside
limit cycle. In the case of the stable time-independent dis
bution, the trajectory spirals to the attracting fixed point.

IV. ENSEMBLE OF COUPLED FITZHUGH-NAGUMO
SYSTEMS

Another illustration of transitions between different d
namical regimes of a mean field is provided by a set
globally coupled FitzHugh-Nagumo elements:

e ẋi5xi2
xi

3

3
2yi1g~ x̄2xi !,

ẏi5xi1a1A2Tj i~ t !, ~11!

wherex̄51/N(k51
N xk(t), N is the number of elements in th

array,g is the coupling strength,a is parameter of excitabil-
ity, e is responsible for the separation of fast and slow ti
scales, andT is noise intensity.

A single noiseless FitzHugh-Nagumo oscillator posses
an unique stable equilibrium fora.1 and a stable limit
cycle for a,1 which is born through the Andronov-Hop
bifurcation @53#.

Equations~11! were simulated numerically forN51000
elements. The coupling strengthg was fixed atg50.1. The
parametera51.05 was chosen in the excitable region,
that in the absence of noise each individual element p
sesses a stable equilibrium. The collective dynamics of
system can be visualized using the mean fields^x(t)& and
^y(t)&. An alternative approach is to introduce phases
individual elements and then proceed with the analysis
complex order parameter in the spirit of Eq.~5!. The phase
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of the i th element can be estimated asw i(t)

5arctan„ẋi(t)/xi(t)… @54#. Then for the ensemble phase d
fined by Eq.~3! the complex order parameters can be cal
lated with the help of Eq.~5!, like in the ensemble of glo-
bally coupled oscillators.

The phase portraits of the system on the pla
^x(t)&, ^y(t)& are shown in Fig. 7. For weak noise the sy
tem possesses a stable equilibrium. With the increase of

FIG. 7. ~a! Phase portraits of the mean field^x(t)&, ^y(t)& for
N5103, a51.05, g50.1, e50.01 and indicated values of nois
intensity T. Magnified phase portrait atT50.007 for N5103 ~b!
andN5104 ~c! elements. Transients are omitted.
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noise intensity a limit cycle is born. The waveform of^x(t)&
resembles periodic spiking of a single FitzHugh-Nagu
model. As we will see below, this situation corresponds
the running phase solution.

With further increase ofT the size of oscillations dramati
cally shrinks atT'0.0068. In this case the waveform̂x(t)&
does not exhibit spikes but rather resembles chaotic mo
@Fig. 7~b!#. This case corresponds to local oscillations in t
phase model@see, e.g., Fig. 6~b!#. A detailed study of transi-
tion to this complex regime is beyond the scope of this
per: in this state the distribution of oscillators is rather
from being single-humped~cf. instantaneous density profile
in Fig. 8! and cannot be properly modeled by the Gauss
approximation.

Here we merely check whether the observed complex
tion is robust against a change of the number of element
the ensemble~see@55# for a discussion of finite size effect
on mean field dynamics!. In Fig. 7~c! we show the results o
simulation ofN510000 elements with the same paramet
values as in Fig. 7~b! which demonstrate a smeared lim
cycle type of attractor. The correlation structure of cor
sponding processes is qualitatively the same as for
smaller ensemble~see the results of power spectra analy
below!. Finally, for large noise intensity the mean field d
namics again collapses to a fixed point, which is appare
different from the equilibrium observed at low values ofT.
Note, that individual elements in both latter cases dem
strate spiking behavior.

Phase portraits for the order parametersc1 ,s1 are shown
in Fig. 9 for the same parameter values as in the previ
plots, and confirm the above conjecture that the increas
noise is accompanied by the transition from the steady s

FIG. 8. Instantaneous density of phase distribution in Eq.~11! at
~a! T50.001; ~b! T50.007; ~c! T50.2.
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through two different kinds of oscillations to the other tim
independent distribution.

Finally, we present the power spectra of the observa
cosf (f the ensemble phase! for three cases of Fig. 9. Th
evolution of the power spectra is shown in Fig. 10. For sm
noise intensity, when the mean field possesses a stable
point, the power spectrum has an uniform distribution~not
shown!, resembling that of white noise.

The limit cycle case@Fig. 9~a!# displays well-defined
peaks at the main frequency and its harmonics. Transitio
the bounded state (T50.007) is characterized by broadene
peaks in the power spectrum. Nevertheless, the oscilla
character of this regime is still expressed in the existence
the sharp peak atv54 and the broad peak at subharmon
which resembles the power spectrum of a chaotic moti
Note that the qualitative structure of the power spectr
does not change with the increase of the number of elem
in the ensemble@solid and dashed lines in Fig. 10~b!#. For
large values of noise the oscillations disappear and the po
spectrum possesses an uniform structure@Fig. 10~c!#.

V. DISCUSSION

Our analysis has shown that the dynamics of ensemble
coupled noisy oscillators can be efficiently modeled with t

FIG. 9. Phase portraits for the order parameter in Eq.~11!. ~a!
T50.001; ~b! T50.007; ~c! T50.2. Other parameters are the sam
as in the previous figure.
6-7
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help of deterministic equations which govern the time e
lution of the lowest cumulants of the distribution. A natur
question in this context is: why does one need this simplifi
and quantitatively not very precise model when the accu
bifurcation diagram can be evaluated either by direct sim
lation or by the high-order truncation of the infinite set
coupled equations for the order parameters? The answe
usually, lies in the transparency and numerical efficiency
the model: in the case of direct stochastic simulations ra
high values of the ensemble sizeN are required in order to
minimize finite-size effects, and for the determinis
parameter-order equation the convergence of truncation
usually not especially fast. In addition, the coefficients
linear terms in Eq.~7! grow ask2; this demands to decreas
the integration stepsize and, what is worse, makes the h
level truncations of the equation potentially stiff numerical

FIG. 10. Power spectra of cosf ~ensemble phase! for the en-
semble of globally coupled FitzHugh-Nagumo elements~11!. ~a!
T50.001,N5103. ~b! T50.007 for N5103 ~solid line! and N
5104 ~dashed line!. ~c! T50.2. Other parameters are the same as
Fig. 9.
ro
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For the equations with large number of variables, the co
plete bifurcation analysis cannot be performed; one can o
hope that none of the stationary solutions has been mis
out by a numerical~Newton-Raphson, etc.! routine. In con-
trast, Eqs.~10! can be brought to the polynomial form whe
all steady solutions can be enlisted.

Another important property of the Gaussian model is t
it operates in terms of variables which have a transpa
meaning. Using the language of distributions, it has be
easy to distinguish between the full-scale rotations and
small-amplitude breathing oscillations; noteworthy, the lat
state went unnoticed in the previous investigations of
namics of Eq.~4! @27,51#.

Of course, the assumption on the Gaussian distribut
laid in the foundation of the model, is only an approxim
tion. However, the estimation of higher-order moments of
distribution, obtained by direct numerical simulation of E
~4! and high-level truncations of Eq.~7! has shown that for
the relevant parameter values the distribution is not very
from a Gaussian: the skewness typically does not exceed
~and is usually much smaller than that!, whereas the curtosis
is seldom larger than 2.

Further, using closure hypotheses based on the assu
tion of Gaussian distributions can be promising in more d
ficult situations, like scattered individual frequencies of o
cillators, complicated functional dependencies f
inhomogeneities of the phase rotation@ f (f) in Eq. ~1!#
and/or for the way in which the individual elements a
coupled @Wi , j in Eq. ~2!#: insights arising from such rela
tively simple low-dimensional models can give a proper id
of the ensemble dynamics, which otherwise can be obtai
only at the cost of long and tedious computations.
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