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Noise-controlled oscillations and their bifurcations in coupled phase oscillators
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We derive in Gaussian approximation dynamical equations for the first two cumulants of the mean field
fluctuations in a system of globally coupled stochastic phase oscillators. In these equations the intensity of
noise serves as an explicit control parameter. Its variation generates transitions between three dynamical
regimesi(i) stationary(ii) rotatory andiii) locally oscillatory(breathing. The latter regime has previously not
been reported in studies of globally coupled noisy phase oscillators. Our detailed bifurcation analysis is
supported by numerical simulations of an ensemble of coupled stochastic phase oscillators. Similar regimes are
also found in simulations of globally coupled stochastic FitzHugh-Nagumo elements.

DOI: 10.1103/PhysReVE.68.066206 PACS nuni)er05.45.Xt, 05.40-a

I. INTRODUCTION where W, ;(¢) are 2m-periodic functions. Below we will
restrict ourselves to global coupling and investigate the sim-

Ensembles of nonlinear oscillators are abundant in naturplest case withW(¢)~N"!sing and N is the number of
[1]. These are in biology, just to mention a few examplesunits in the ensemble.
populations of epithelial sensory cell2], neurons[3,4], The generic systen2) has been successfully applied to
heart cells[5-7] or, on the macroscopic level, swarms of studies of synchronization and pattern formation in a lot of
flashing fireflies[8,9] and oscillating populations of species different situation$11,2§. In particular, ifQ)>a it describes
in ecosystem$10]. Outside the living nature, ensembles of waves, synchronizations and global oscillations of coupled
oscillators are encountered in different areas of chemistrgelf-sustained oscillators. Contrary, in cd3eZa the model
[11,12 and physic§13-19. yields pulse and spiral propagation as well as more compli-

This great variety of systems shares the common tendenayated structures in coupled excitable uditd]. Studies on
to synchronize their oscillatory constituents. This synchroni-mutual synchronization with local and global coupling were
zation is caused by the interaction between the elements iextended to the case of nonidentical oscillators, whose natu-
the ensembile. It results in the emergence of one or of severedl frequencies  — ;) are distributed over some interval
collective modes and manifests itself in the adjustment of5,24,29—-3% A rich variety of different locally and globally
phases of the individual oscillatof®0,21]. Thereby, syn- locked, running, pinned and oscillatory-dead states has been
chronization serves as a fundamental mechanism of selfeported[36—41]. For random dichotomic perturbations of
organization and structure formation in systems of coupled);(t), bistability and oscillatory behavior of globally
oscillators[13,22,23. coupled phase oscillators were foufib,42,.

The dynamics of a single oscillatory element can be cast Below we concentrate on noise effects in collective dy-
into a simple form by restricting the description to its phasenamics of globally coupled oscillato®). In particular, we
dynamics along a limit cyclg11]: address the question whether an additive white noise acting

independently on every unit in the ensemble can lead to
. qualitative (or bifurcational changes in the global response
e=Q+f(p). (1) of the system.
The nontrivial role of noise in coupled phase oscillators
was underlined in several studies. For example, extremely
Therein(} is the natural frequency of the oscillator and therich behavior is enforced by multiplicative noise as noise-
2mr-periodic functionf(¢) describes the inhomogeneity of induced first and second order phase transitions and cluster-
the temporal evolution along the limit cycle. In the genericing [43—45. Spontaneous symmetry breaking entailing a
first approximation this function can be modeled byp)  ratchet-like transport mechanism with negative resistance
~asing with a being the nonlinearity parameter. and a hysteretic behavior are subjectd4$—-49. Globally

In case of coupled oscillators the equations of individualconnected ratchets were described50].
units have to be complemented by additional terms respon- Here we reconsider the simplest case where statistically
sible for their interaction. For most relevant interactionsindependent noise sources with constant intensity are added
these terms depend on the difference of the individual phasas Egs.(2). In Sec. Il we derive dynamical equations for the
only. These equations can be written[24—28 first two cumulantgthe mean and the variancef the en-

semble phase

d 1
qrei=Qasine+ 2 Wij(e- ), v sO=5 2 i), 3
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within Gaussian approximation. In similar previous attempts | _ ) ak Wk
restricted to weak noise a transition to noise-induced oscilla-  pk=pPk(IK—=K"T) = = (pis 1= pr-2) + 5 (p1PK-1
tions in coupled excitable units was reportegd]. In con-

trast, our approach remains valid for strong noise as well. We —p7 Prs1)s (6)
perform a detailed bifurcation analysiSec. Ill) and identify
a novel regime of localized or breathing oscillations. complemented by the “boundary conditiops=1. In terms

Further on, we support the dynamical analysis of the deof realc, andsy this reads as
terministic cumulant equations by numerical simulations of
stochastic phase equations as well as of globally coupled
noisy FitzHugh-Nagumo systen{Sec. 1\). We show that
the increase of noise results in changes of the behavior which
are in accordance with the general picture found for the cu- ~C+1) = S1(Sk-1F S+ 1), v
mulant equations.

) ) ak Wk
Cx= —Tk Cyx— ksk_ ?(Ck-%—l_ck—l) + T(Cl(ck_l

) 5 ak Wk
S= — Tks+ke— 7(Sk+l_sk*l)+ T(Cl(sk*1

Il. THE MODEL AND CUMULANT EQUATIONS

. — —Sk+1) TS1(Ck—1+Cyr 1)),
We start with a set oN globally coupled identical non- ’ ’

linear oscillators which are subject to white noise. The statavith co=1, s5=0.
of each oscillator is characterized by its instantaneous phase To study possible regimes in such infinite sets of equa-
¢; . We choose one of the most studied examples—the “actions, usually a truncation is performed: variabjgs with

tive rotators”—introduced irf26]: values ofk beyond certairk, are neglected. The description
of bifurcations was performed witky=20 in [27]. Notably,
N in spite of the formal possibility of a very complicated dy-
ei=1-asing+ — > sin(@;— ¢;) + &(1), (4) namics in a high-dimensional phase space, the attractors of
N =1 . Eq. (7) are rather simple. Our numerical experiments Wih
up to 100 failed to reveal attracting states other than equilib-
with i=1, ... N. Here, the parametea characterizes the ria or periodic solutions. At nonzero values of noise intensity

inhomogeneity of the phase rotation. When for an isolated the variablesc, ands, are rapidly decaying with the in-
oscillator a is increased across the vell a saddle-node Crease ofk, thereby justifying a truncation. However, for
bifurcation occurs and the oscillatory regime is replaced by €Y Small T the ensemble ofp; remains highly ordered,
steady state. The intensity of coupling between the oscillatherefore the decay @ ands, becomes visible rather lately,
tors is measured by the parame¥r Finally, the stochastic @nd low values of the truncation levkj in this parameter
terms &(t) correspond to thermal fluctuations modeled by'€gion may result in the appearance of numerical artifacts:

Gaussian white noise Witfg;(t;) € (t,))=2T5, ;8(t—t5). spurious quasiperiodic or even _cha_otic attractors. .
Formally, it is possible to choose a “corotating” reference  1he very fact that the behavior is low-dimensional hints

frame by introducing a set of variableg(t)= ¢;(t)—t, i to the possibility of an alternative, much simpler and com-

—1,...N. Then 1-asing is replaced by—lasimpi. putationally less expensive model, in which a small number

Equations of this kind have been recently treated 4. of variables would deliver an adequate description of dynam-

However, in certain situations the laboratory reference framéS: In fact, such approach would be tantamount to a closure
is preferable, and below we provide the description of behay©f the infinite set of equation§). This requires a hypothesis
ior in Eq. (4) from the point of view of the quiescent ob- ©" the distribution of the oscillators in the ensemble. Recon-

server. structed from the values of thg, the distribution has a dis-

Quantitatively, the coherence in an ensemble of oscillatordNCt Single-hump shape. Therefore, it appears natural to
can be measured by complex averaged characteristics model this dlstrlbutlon. by a Gaussmn approximation. We as-
sume that the mean fiel@®) obeys a time-dependent Gauss-

ian distribution with the meam(t) and the variancer(t),
respectively. Then the order parameters become explicit

N
— ikepj — i —
PK= 121 efi=cctisk, k=12....%# ) functions of these first two cumulants:

Z| -

—K25212 —K25212

sg=e sinkm, c,=e coskm. 8
with ¢, =N~} coske;, s;=N"'Z]L,sinke; defined in
the limit N—oo. In the completely disordered state all these As a result, alic, andsy can be expressed through and
characteristics vanish identically. On the contrary, in a syns;: czzc‘l‘—s‘l", SZZZSlcl(str cf), etc. By virtue of this,
chronized state they possess nonzero values. Therefore, ittise infinite-dimensional Eq7) is reduced to a system of the
natural to treat the variables, as a set of complex order 2nd order:
parameters. Among those, of course, the variableands; W
are of special significance. - a 4, 4 G 2, 22
The dynamics of the collective variablgg obeys the C1= =8 TC= 5 (Cr=8; =D+ 5= (A= (e85,
infinite chain of coupled complex-valued equati¢@g], 9
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. Ws;
s;=C;—Ts,—as;cy(c2+s9)+ —- (- (c2+s2)2?). Hopf bifurcation

Alternatively, on eliminating all variables,,s,, we ar-
rive at a set of purely dynamical equations for the evolution
of the cumulants:

m=1—ae “"2cosha2sinm, (10)

o2=2T—2(ae "?cosm+We “°)sinho?.

1.4

Equations(9) and (10) represent two equivalent param-
eterizations of the same dynamical system, that is the Gauss-
ian “truncation” of the infinite Eq.(7). For an observer who FIG. 1. Steady solutions of cumulant equatidas) at W=1.
watches the whole entity of rotators in the laboratory frameSolid gray line: Hopf bifurcation. Filled gray circle: Takens-
the description in terms of cumulants appears to be mor8ogdanov blfurcqtlon. Here and below all plotted quantities and
convenient, since this set of variables yields the measurabframeters are dimensionless.
characteristics: the position of the instantaneous center of the ) ) o )
distribution and its width. The evolution of the “micro- 9ebraic expression for the discriminant surface in terms of
scopic” system(4) is determined by the immediate positions (&, W,T) is far too long and cumbersome to be quoted ex-
of the individual oscillators on the circle<0p; <27 and  Plicitly; below we merely present the results based on the
does not depend on their histories: the number of rotationgnalysis of this expressiofiThe same expression is obtained
completed by each of these oscillators around the circleffom Egs. (10) after turning their transcedental RHS into
Therefore, the “macroscopic” variable is restricted to a Polynomial functions ‘Q"th the help of the substitutiors
circle, and the phase space of Ef0) is a cylinder. Math- =tan(m/2) andy=e ? .] Since changes in the number of
ematically, of course, the description in termsrofand o real roots correspond in the phase space to a birth and death
does not differ from the description in terms@f,s;, up to  of stationary solutions, the knowledge of the location of the
an important distinction: for the latter variables the phasediscriminant surface characterizes completely the saddle-
space is a planéwith physically meaningful values lying node bifurcations. Finally, stability of stationary solutions is
within the unit circlg. As we will see below, this topological expressed in terms of the coefficients of the Jacobian matrix;
difference can be crucial for the interpretation of certaine.g., the Hopf bifurcation requires a vanishing trace of the
events. Jacobian.

A similar approach was pursued [iB1] where the distri- For the analysis of the time-dependefpteriodic, ho-
bution of rotators in Eq(4) was also assumed to be Gauss-moclinic) solutions we used a standard 4th order Runge-
ian, but only the least order terms irf were retained. No- Kutta integrator. Pgriodic states were identified as fixed
tably, in the nonstationary regimes of the dynamical systenpoints of the Poincarenapping on the appropriate curve on
derived in[51], the variables? displayed unbounded growth the phase plane. Homoclinic bifurcatiofexistence of tra-
which indicated to the inconsistency of the model. On thelectories, asymptotical to the saddle pointtat +«) were
contrary, the presence of higher order terms in @@) en-  identified as “border” parameter values at which the numeri-
sures a saturation at finite values «f. cally reconstructed unstable manifold of the saddle switched
between two different attractors.

An analysis of Eqs(10) shows that in the physically rel-
evant domain of the parameter space, they possess from 1 to

In this section, we describe the bifurcations in E(€) 3 steady solutions. The typical situation is represented in Fig.
[or, equivalently, in Eqs(9)]. 1. We see that the surface of steady solutions forms two folds

Since we are unable to write down the time-dependentvhich meet in a cusp point. The steady states on the lower
solutions as explicit functions of time and the parameters leaf of this surface are stable; the ones on the intermediate
W andT, the respective parts of the bifurcation diagrams ardeaf are always unstablé&hey correspond to the saddle
obtained with the help of numerical bifurcation techniques.points. Finally, the states on the upper leaf are unstable for
In contrast, derivation of conditions for the bifurcations of low values of T and stable “beyond” the solid line which
time-independentstationary solutions can be reduced to an denotes the Hopf bifurcation.
algebraic problem. This reduction can be done in the follow- Complete bifurcation diagrams are presented in Fig. 2.
ing way. On calculating the resultant of the right-hand sideFor the description of the bifurcation scenarios it is conve-
(RH9 of Egs.(9) with respect to either of the variablegsor  nient to consider the following route in the parameter space:
c,, We obtain a polynomial equation of the 21st degree foffix the values ofl andW, and proceed by gradually decreas-
the remaining variable, where the coefficients are expliciing a. High values ofa correspond to the domain in which
functions of @,W,T). In the 3-dimensional parameter space,the steady statéfixed poind is unique and globally attract-
all changes in the number of real roots of the latter polynoding. If the intensity of noise€T is sufficiently high, variation
mial occur on a 2-dimensional discriminant surface. The al-of a does not destabilize this state. However, for low and

IIl. DYNAMICAL REGIMES AND THEIR BIFURCATIONS
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FIG. 3. Enlarged segment of the bifurcation diagram of @q)
at W=1. sn;,: saddle-node bifurcationsj: Hopf bifurcation; h:

homoclinic bifurcation; circles: bifurcation points of codimension 2.

Takens-Bogdanov point, denoted as TB in Fig. 3. The left
FIG. 2. Bifurcation diagrams of Eq10) at W=1 (a) andW  end point ofh (denoted byL) lies on the saddle-node curve
=0.25(h). sny ,: saddle-node bifurcationsi: Hopf bifurcation;h:  sn,. Here, another codimension-2 event takes place: the un-
homoclinic bifurcation;S: change of type of oscillatory state; filled stable manifold of the saddle-node point returns back to this

circle: Takens-Bogdanov point. fixed point along the “nonleading” directiof52]. The seg-
ment ofsn, which lies below the point, corresponds to the
moderate values of the decrease ad leads through a se- so-called “Andronov bifurcation:” the structurally unstable
quence of bifurcations. There are two saddle-node bifurcasaddle-node point possesses a homoclinic loop; winés
tions: one of thenithe right fold in Fig. 1, the linesn, in decreased, the fixed point disappears, the loop is destroyed
Fig. 2 creates two additional steady states: a saddle poirdnd leaves in the phase space the limit cycle. On this seg-
and a node, whereas the other dtie left fold, respectively ment ofsn,, the saddle-node and homoclinicity are present
the line sn,) destroys the saddle and the original steadytogether; beyond the codimension-2 pdirthey detach, and
state. For lower values @ the system has an attracting limit two separate curves exist: ofthe upper segment sfn,) for
cycle. On both curvesn; andsn, one of the eigenvalues of the saddle-node bifurcation, the other dittee curveh) for
the linearization of the flow near the steady state vanisheshe homoclinic bifurcation.
On the right branctsn, of the saddle-node bifurcation, there  Just below the curvel of the Hopf bifurcation, the new-
is a point where the second eigenvalue vanishes as well. Thisorn periodic orbit has a small amplitude. When, under fixed
point (the codimension-2 Takens-Bogdanov bifurcatio®  a, the value of T is decreased, this amplitude gradually
an origin of two further bifurcation lines: the Hopf bifurca- grows. On reaching the further bifurcation curve, denoted by
tion and the homoclinic bifurcation. The lirté of the Hopf ~ Sin Fig. 2, the topology of this periodic orbit in the phase
bifurcation extends into the domain of lowarfor smalla it space ofmn ando? changes: out of a closed trajectory which
tends toT=W/2. Above H, the steady state is stable, and can be continuously contracted into a point, it becomes a
below this line the stable limit cycle exists. closed curve wrapped around the cylinder. From the point of
The curveh of the homoclinic bifurcation marks the ex- view of the observer in the laboratory frame, this marks an
istence of an orbit which is homoclinic to the saddle point;important qualitative transition: in the dynamics of nonsta-
by definition, this requires the presence of a saddle pointionary distribution(time-dependent density of rotatprhe
therefore this curve exists only in the “wedge” between two “breathing” oscillations of the center back and forth are re-
lines sn, , of saddle-node bifurcations. Details of the inner placed by full-circle rotations. In the phase space, this pro-
structure of this wedge are presented in Fig. 3. The part ofess is mediated by a “non-physical” repelling phase trajec-
the wedge above the curve of homoclinic bifurcatlooor-  tory which leads to the infinite pointnf= 7, o?=x): the
responds to a hysteretic dynamics: in the parameter regioperiodic orbit “touches” this trajectory and changes its to-
between the curvels, H andsn, the stable steady state co- pology. This can be viewed as a kind of a global bifurcation:
exists with the attracting limit cycle, whereas in the “tri- homoclinics to the fixed point which lies at infinity. The
angle” delineated by the Hopf bifurcation cur¢and two increase and subsequent decrease of the amplitude of oscil-
saddle-node bifurcationsn, , two stable steady states are lations in o> happens rapidly, in a rather narrow parameter
present. interval; several stages of this process are depicted in Fig. 4.
As mentioned above, on the parameter plane the right end However, strictly speaking this transition is not a true bi-
point of the curveh of the homoclinic bifurcation is the furcation but a peculiar projection effect, an imitation of a
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FIG. 4. Transition from oscillations to rotations. Phase portraits
of Eq. (10) for A=1.06, W=1 and various values df. The “bi-
furcation” value isTs=0.1953520 . .. . ()
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FIG. 5. Distribution of oscillators aa=0.9; W=1 from direct

bifurcation: from the point of view of the phase portraits on
the plane spanned by variables s; there are no qualitative
changes. The decreasefeads to the growth of the size of
the closed curve corresponding to the limit cycle. At a certain

value of T this curve passes through the origig=s,=0. numerical simulation oN= 10" oscillators governed by Eq$4):

Acc;ordlngly, in the course of temporal evolution the distri- evolution of instantaneous profiles and isolines of local density
bution of rotators becomes for a short moment perfectly flat;

this corresponds to unbounded variance. It is exactly thié?za:dl;ng:gt?ig:t?jr? 2;:8:;_’ (b) local oscillations aff =0.25; (c)
event which in terms of cumulantas and o2 looks like an
excursion to infinity and denotes the transition from local-of T the steady staté&orresponding to the time-independent
ized oscillations to rotations. On the phase plapgs, both  distribution of mean fieldgets stabilized. If the value &f
states are described by a closed curve; if this curve encirclegightly exceeds 1, the sequence of states starts with the time-
the origin, the distribution is rotating; if the origin lies out- independent distribution which remains stable within a cer-
side the curve, the center of the distribution is merely osciltain interval of noise intensities. On crossing the cusve,
lating back and forth. this steady state disappears, and the onset of oscillatory re-

Since this switching of the periodic orbit is only an “imi- gime takes place, with the phase either running around the
tated” homoclinics, the temporal period of this orbit does notcircle (for lower values ofa) or oscillating back and forth
diverge, in contrast to the usual picture of a homoclinic bi-(for moderate values od). Finally, on the curveH of the
furcation. Within the cumulant description, this can be ex-Hopf bifurcation, the amplitude of oscillations shrinks and
plained by the noncompact character of the event: since thie other steady solution acquires stability. In this way, the
saddle point lies at infinity, both the approach to this pointintensity of external noise controls whether the mean field of
along its stable manifold and the subsequent departure alorapn ensemble of oscillators settles down to a stationary distri-
the unstable manifold occur at infinite speed. Accordingly,bution or prefers the distribution which is periodic in time.
the slowdown near the saddle, typical for conventional ho- Variation of the coupling strengtidV appears to produce
moclinic bifurcations, is absent, and the duration of motionmerely the quantitative changes in the bifurcation diagram.
along trajectory remains finite. With the decrease &l the bifurcation values of are getting

Of course, near the homoclinic bifurcations which involve smaller [Fig. 2(b)]; the wedge between the curves of the
the finite-amplitude saddle point, the period of oscillationssaddle-node bifurcation becomes sharper: in the determinis-
diverges; on approaching from the left the lower segment ofic limit T—0 the linesn,, irrespectively ofW, begins at
the curvesn, (Fig. 3) this divergence follows the law of (a=1T=0) whereas the starting point &, for W—0
inverse square root, whereas just above the ctrtiee di-  tends to A=3%42=1.1395 ... T=0).
vergence is logarithmic. To check the above conjectures, we performed direct nu-

In the setup with fixed parameteasandW and a control-  merical integrations of Eq4) with a set ofN= 10" oscilla-
lable level of noise, the bifurcations are encountered in diftors. Qualitatively, the results correspond to the predictions
ferent order. Ifa is chosen to the left of the cunan, low  of the above analysis: for low intensities of noise the rela-
noise intensitiesi.e., the small values of) correspond to tively sharped peaked distribution rotates around the circle
the rotating distribution of oscillators; &6 gets largerlon  [Fig. 5a)], for intermediate intensities the oscillations with
crossing the curveés) rotations are replaced by oscillations small amplitude have been obsenfé&dy. 5(b)] and for high
around a steady state. Further growthTofeads to the de- values ofT the system settles onto the steady broad distribu-
crease of the amplitude of these oscillations; at high valueton [Fig. 5(c)]. Of course, the steadiness of the distribution
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05 | 41 ost} . FIG. 6. Phase portrait§with
transients for the order parameter

ook J ool ] in numerically simulated Eq€4)
at a=0.9; W=1. (@ Running

05k 1 ostL ] phase aff =0.1; (b) local oscilla-

tions atT=0.22; (c) steady distri-
bution atT=0.3.
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does not imply time independence for individual oscillators;of the ith element can be estimated ag;(t)

also in the rotating state the angular velocities of the oscilla-_ ’ ' i
tors typically exceed the rate with which the entire distribu-_arCtamX'(t)/x'(t)) [54]. Then for the ensemble phase de

tion rotates around the cylinder. Quantitatively, the thresholri;ned by Eq.(3) the complex order parameters can be calcu-

values for the transitions between those states turned out a;ﬁd xltjh l?; ohsecliplla(:foriq(S) , like in the ensemble of glo-
be lower than the values predicted by the bifurcation analysis Y P i

of Egs.(10); this can be seen, e.g., by comparison of param-<x (‘{)r;e ( p(r;;s Zrepglfr]tcr)s\;tnsinolii th7e Fsoyrs\fégk (r)]giséhtehepslag_e
eters employed for Fig. 5 with the bifurcation diagram of Y 9. /. y

. tem possesses a stable equilibrium. With the increase of the
Fig. 2(a).

Phase portraits for the componegtsands; of the com- 1
plex order parameter are presented in Fig. 6. Noisy limit
cycles characterize both the rotating and the locally oscillat-
ing distributions; in the former case, the diameter of the
cycle is noticeably larger, and the origin lies inside it; in the A
latter case the origin on the phase plane remains outside the Z
limit cycle. In the case of the stable time-independent distri-
bution, the trajectory spirals to the attracting fixed point.

IV. ENSEMBLE OF COUPLED FITZHUGH-NAGUMO
SYSTEMS

Another illustration of transitions between different dy-

. ) : i . -0.06f
namical regimes of a mean field is provided by a set of
globally coupled FitzHugh-Nagumo elements:
_ X3 - A-o.1ef
X=X~ 5 ~Yit y(X=X), =
\%
: — -0.26}
Yi=x+a+\2TE(1), (1D)
wherex= 1/NEE:1xk(t), N is the number of elements in the -0.36
array, v is the coupling strengtta is parameter of excitabil- -0.06f ' ‘ © ]

ity, € is responsible for the separation of fast and slow time
scales, and is noise intensity.

A single noiseless FitzHugh-Nagumo oscillator possesses -0.16
an unique stable equilibrium foa>1 and a stable limit
cycle for a<l which is born through the Andronov-Hopf
bifurcation[53]. 026}

Equations(11) were simulated numerically fdX=1000
elements. The coupling strengihwas fixed aty=0.1. The

<y(t)>

parametera=1.05 was chosen in the excitable region, so -0.36 . ‘ .

that in the absence of noise each individual element pos- -1.56 -1.06 -0.56

sesses a stable equilibrium. The collective dynamics of the x>

system can be visualized using the mean fidkid)) and FIG. 7. (a) Phase portraits of the mean figlg(t)), (y(t)) for

(y(t)). An alternative approach is to introduce phases foN=10%, a=1.05, y=0.1,e=0.01 and indicated values of noise
individual elements and then proceed with the analysis ofntensity T. Magnified phase portrait &f=0.007 for N=10* (b)
complex order parameter in the spirit of E§). The phase andN=10 (c) elements. Transients are omitted.
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FIG. 8. Instantaneous density of phase distribution in(Et). at 0o
(@) T=0.001;(b) T=0.007;(c) T=0.2. Py
noise intensity a limit cycle is born. The waveform(of(t))
resembles periodic spiking of a single FitzHugh-Nagumo ]
model. As we will see below, this situation corresponds to i q 0 1
the running phase solution. s

With further increase of the size of oscillations dramati-
cally shrinks aff~0.0068. In this case the waveforr(t)) FIG. 9. Phase portraits for the order parameter in @d). (a)
does not exhibit spikes but rather resembles chaotic motiofi=0-001;(b) T=0.007;(c) T=0.2. Other parameters are the same
[Fig. 7(b)]. This case corresponds to local oscillations in the?S in the previous figure.
phase modefsee, e.g., Fig. ®)]. A detailed study of transi-  through two different kinds of oscillations to the other time-
tion to this complex regime is beyond the scope of this pajndependent distribution.
per: in this state the distribution of oscillators is rather far Fina"y, we present the power spectra of the observable
from being single-humpectf. instantaneous density profiles cos¢ (¢ the ensemble phaséor three cases of Fig. 9. The
in Fig. 8) and cannot be properly modeled by the Gaussiarevolution of the power spectra is shown in Fig. 10. For small
approximation. noise intensity, when the mean field possesses a stable fixed
Here we merely check whether the observed complex mopoint, the power spectrum has an uniform distribut{oont
tion is robust against a change of the number of elements ishowr), resembling that of white noise.
the ensemblésee[55] for a discussion of finite size effects ~ The limit cycle case[Fig. 9a)] displays well-defined
on mean field dynamigsin Fig. 7(c) we show the results of peaks at the main frequency and its harmonics. Transition to
simulation ofN=10000 elements with the same parameterghe bounded stateT(=0.007) is characterized by broadened
values as in Fig. (b) which demonstrate a smeared limit Peaks in the power spectrum. Nevertheless, the oscillatory
cycle type of attractor. The correlation structure of corre-Character of this regime is still expressed in the existence of
sponding processes is qualitatively the same as for théhe sharp peak ab=4 and the broad peak at subharmonics
smaller ensemblésee the results of power spectra analysisWh'Ch resembles the power spectrum of a chaotic motion.

below). Finally, for large noise intensity the mean field dy- Note that the qual_itative structure of the power spectrum
namics again collapses to a fixed point, which is apparent| oes not change with the increase of the number of elements

different from the equilibrium observed at low valuesTof n the ensemblésplid and d"’.‘Sh?d “”‘?S in Fig. @0). For
Note. that individual elements in both latter cases demonl-arge values of noise the oscillations disappear and the power
straté spiking behavior. spectrum possesses an uniform strucfiiig. 10c)].

. P_hase portraits for the order parametess, are shown. V. DISCUSSION

in Fig. 9 for the same parameter values as in the previous

plots, and confirm the above conjecture that the increase of Our analysis has shown that the dynamics of ensembles of
noise is accompanied by the transition from the steady stateoupled noisy oscillators can be efficiently modeled with the
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For the equations with large number of variables, the com-
plete bifurcation analysis cannot be performed; one can only
hope that none of the stationary solutions has been missed
out by a numerica(Newton-Raphson, etcroutine. In con-
trast, Eqs(10) can be brought to the polynomial form where
all steady solutions can be enlisted.

Another important property of the Gaussian model is that
it operates in terms of variables which have a transparent
meaning. Using the language of distributions, it has been
easy to distinguish between the full-scale rotations and the
small-amplitude breathing oscillations; noteworthy, the latter
state went unnoticed in the previous investigations of dy-

S(w) :

0 * - namics of Eq.(4) [27,51].
S(o) © ] Of course, the assumption on the Gaussian distribution,
C . laid in the foundation of the model, is only an approxima-
-60[ p tion. However, the estimation of higher-order moments of the
[ ] distribution, obtained by direct numerical simulation of Eq.
120k ] (4) and high-level truncations of Eq47) has shown that for
2 4 4 6 8 10 the relevant parameter values the distribution is not very far

from a Gaussian: the skewness typically does not exceed 0.1
(and is usually much smaller than thavhereas the curtosis

is seldom larger than 2.

Further, using closure hypotheses based on the assump-
n of Gaussian distributions can be promising in more dif-
ficult situations, like scattered individual frequencies of os-

help of deterministic equations which govern the time evo-illators, — complicated  functional ~ dependencies  for
lution of the lowest cumulants of the distribution. A natural iNhomogeneities of the phase rotatiph(¢) in Eq. (1)]
question in this context is: why does one need this simplifiend/or for the way in which the individual elements are
and quantitatively not very precise model when the accurat§°Upled[ W ; in Eq. (2)]: insights arising from such rela-
bifurcation diagram can be evaluated either by direct simuliVely simple low-dimensional models can give a proper idea
lation or by the high-order truncation of the infinite set of of the ensemble dynamics, which otherwise can be obtained
coupled equations for the order parameters? The answer, 881y at the cost of long and tedious computations.

usually, lies in the transparency and numerical efficiency of
the model: in the case of direct stochastic simulations rather
high values of the ensemble sikeare required in order to
minimize finite-size effects, and for the deterministic Our research was supported by SFB-555, projects 315/ab
parameter-order equation the convergence of truncations of DAAD and INT-0128974 of the NSF. A.B.N. acknowl-
usually not especially fast. In addition, the coefficients atedges support from the National Institutes of Hed{@rant
linear terms in Eq(7) grow ask?; this demands to decrease No. R01DC004922 to D.F. RusselWe are grateful to R.
the integration stepsize and, what is worse, makes the highkawai, A. Pikovsky, and P. Reimann for stimulating discus-
level truncations of the equation potentially stiff numerically. sions.

FIG. 10. Power spectra of c@s(ensemble phagdor the en-
semble of globally coupled FitzHugh-Nagumo elemefit$). (a)
T=0.001,N=10% (b) T=0.007 for N=1C® (solid line and N
=10* (dashed ling (c) T=0.2. Other parameters are the same as intio
Fig. 9.
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